
BitShares Core Release 2.0.180612

optional< api_access_info > application_impl::get_api_access_info(const string& username)const

(14) application.cpp

optional< api_access_info > result;

it == _apiaccess.permission_map.end()

true

auto it =_apiaccess.permission_map.find(username);

it = _apiaccess.permission_map.find("*");

it == _apiaccess.permission_map.end()

return result;

true

false

false

(1/3)

start

 return it->second;

end

BitShares Core Release 2.0.180612

bool application_impl::has_item(const net::item_id& id)

 application.cpp

id.item_type == graphene::net::block_message_type

true

return _chain_db->is_known_block(id.item_hash);

FC_CAPTURE_AND_RETHROW((id))

false

 1

start

return _chain_db->is_known_transaction(id.item_hash);

end

 * If delegate has the item, the network has no need to fetch it.

 try

BitShares Core Release 2.0.180612

bool application_impl::handle_block(const graphene::net::block_message& blk_msg,
 bool sync_mode,
 std::vector<fc::uint160_t>& contained_transaction_message_ids)

(17-1) application.cpp

!sync_mode || blk_msg.block.block_num() % 10000 == 0

true

const auto& witness = blk_msg.block.witness(*_chain_db);
const auto& witness_account = witness.witness_account(*_chain_db);
auto last_irr = _chain_db->get_dynamic_global_properties().last_irreversible_block_num;

start

false

@brief allows the application to validate an item prior to broadcasting to peers.

@param sync_mode true if the message was fetched through the sync process, false during normal operation
@returns true if this message caused the blockchain to switch forks, false if it did not

@throws exception if error validating the item, otherwise the item is safe to broadcast on.

auto latency = fc::time_point::now() - blk_msg.block.timestamp;

ilog("Got block: #${n} ${bid} time: ${t} latency: ${l} ms from: ${w} irreversible: ${i} (-${d})",
 ("t",blk_msg.block.timestamp)
 ("n", blk_msg.block.block_num())
 ("bid", blk_msg.block.id())
 ("l", (latency.count()/1000))
 ("w",witness_account.name)
 ("i",last_irr)
 ("d",blk_msg.block.block_num()-last_irr));

FC_ASSERT((latency.count()/1000) > -5000, "Rejecting block with timestamp in the future");

 try

 try

bool result = _chain_db->push_block(blk_msg.block,
 (_is_block_producer | _force_validate) ?
 database::skip_nothing : database::skip_transaction_signatures);

// the block was accepted, so we now know all of the transactions contained in the block

// TODO: in the case where this block is valid but on a fork that's too old for us to switch to,
// you can help the network code out by throwing a block_older_than_undo_history exception.
// when the net code sees that, it will stop trying to push blocks from that chain, but
// leave that peer connected so that they can get sync blocks from us

17-1b

BitShares Core Release 2.0.180612

bool application_impl::handle_block(const graphene::net::block_message& blk_msg,
 bool sync_mode,
 std::vector<fc::uint160_t>& contained_transaction_message_ids)

(17-2) application.cpp

true

graphene::net::trx_message transaction_message(transaction);

contained_transaction_message_ids.push_back(graphene::net::message(transaction_message).id());

17-1b

false

 for

elog("Error when pushing block:\n${e}", ("e", e.to_detail_string()));

FC_THROW_EXCEPTION(graphene::net::unlinkable_block_exception,
 "Error when pushing block:\n${e}",
 ("e", e.to_detail_string()));

 // translate to a graphene::net exception

!sync_mode

/ if we're not in sync mode, there's a chance we will be seeing some transactions
// included in blocks before we see the free-floating transaction itself. If that
// happens, there's no reason to fetch the transactions, so construct a list of the
// transaction message ids we no longer need.
// during sync, it is unlikely that we'll see any old

// the block was accepted, so we now know all of the transactions contained in the block

const processed_transaction& transaction :
blk_msg.block.transactions

return result;

catch (const graphene::chain::unlinkable_block_exception& e)

 catch(const fc::exception& e)

elog("Error when pushing block:\n${e}", ("e", e.to_detail_string()));

throw;

!_is_finished_syncing && !sync_mode

_is_finished_syncing = true;
 _self->syncing_finished();

true

FC_CAPTURE_AND_RETHROW((blk_msg)(sync_mode))

return false;

false

e

BitShares Core Release 2.0.180612

void application_impl::handle_transaction(const graphene::net::trx_message& transaction_message)

18-1 application.cpp

static fc::time_point last_call;
static int trx_count = 0;
++trx_count;

auto now = fc::time_point::now();

s

 try

now - last_call > fc::seconds(1)

true

ilog("Got ${c} transactions from network", ("c",trx_count));

last_call = now;
trx_count = 0;

false

_chain_db->push_transaction(transaction_message.trx);

FC_CAPTURE_AND_RETHROW((transaction_message))

e

BitShares Core Release 2.0.180612

bool application_impl::is_included_block(const block_id_type& block_id)

20-1 application.cpp

uint32_t block_num = block_header::num_from_id(block_id);

s

block_id_type block_id_in_preferred_chain = _chain_db->get_block_id_for_num(block_num);

return block_id == block_id_in_preferred_chain;

e

BitShares Core Release 2.0.180612

std::vector<item_hash_t> application_impl::get_block_ids(const std::vector<item_hash_t>& blockchain_synopsis,
 uint32_t& remaining_item_count,
 uint32_t limit)

(21-1) application.cpp

blockchain_synopsis.empty() ||
 (blockchain_synopsis.size() == 1 && blockchain_synopsis[0] == block_id_type())

true

bool found_a_block_in_synopsis = false;

start

false

 * Assuming all data elements are ordered in some way, this method should
 * return up to limit ids that occur *after* the last ID in synopsis that
 * we recognize.
 *
 * On return, remaining_item_count will be set to the number of items
 * in our blockchain after the last item returned in the result,
 * or 0 if the result contains the last item in the blockchain

 vector<block_id_type> result;
 remaining_item_count = 0;

FC_THROW_EXCEPTION(graphene::net::peer_is_on_an_unreachable_fork,
 "Unable to provide a list of blocks starting at any of the blocks in peer's synopsis");

 try

// peer has sent us an empty synopsis meaning they have no blocks.
// A bug in old versions would cause them to send a synopsis containing block 000000000
// when they had an empty blockchain, so pretend they sent the right thing here.

// do nothing, leave last_known_block_id set to zero

true

last_known_block_id = block_id_in_synopsis;
found_a_block_in_synopsis = true;
break;

false

 for
const item_hash_t& block_id_in_synopsis :

boost::adaptors::reverse(blockchain_synopsis)

block_id_in_synopsis == block_id_type() ||
 (_chain_db->is_known_block(block_id_in_synopsis) &&

is_included_block(block_id_in_synopsis))

!found_a_block_in_synopsis

false

21-1b

false

true

 _chain_db->head_block_num() == 0

 return result;

result.reserve(limit);
block_id_type last_known_block_id;

true

false

BitShares Core Release 2.0.180612

std::vector<item_hash_t> application_impl::get_block_ids(const std::vector<item_hash_t>& blockchain_synopsis,
 uint32_t& remaining_item_count,
 uint32_t limit)

(21-2) application.cpp

true

21-1b

true

 for

uint32_t num = block_header::num_from_id(last_known_block_id);
 num <= _chain_db->head_block_num() && result.size() < limit;

 ++num

 num > 0

result.push_back(_chain_db->get_block_id_for_num(num));

!result.empty() && block_header::num_from_id(result.back()) <
_chain_db->head_block_num()

remaining_item_count =
_chain_db->head_block_num() - block_header::num_from_id(result.back());

true

return result;

false

false

FC_CAPTURE_AND_RETHROW((blockchain_synopsis)(remaining_item_count)(limit))

e

BitShares Core Release 2.0.180612

std::vector<item_hash_t> application_impl::get_blockchain_synopsis(const item_hash_t& reference_point,
 uint32_t number_of_blocks_after_reference_point)

 application.cpp

/**
 * Returns a synopsis of the blockchain used for syncing. This consists of a list of
 * block hashes at intervals exponentially increasing towards the genesis block.
 * When syncing to a peer, the peer uses this data to determine if we're on the same
 * fork as they are, and if not, what blocks they need to send us to get us on their
 * fork.
 *
 * In the over-simplified case, this is a straighforward synopsis of our current
 * preferred blockchain; when we first connect up to a peer, this is what we will be sending.
 * It looks like this:
 * If the blockchain is empty, it will return the empty list.
 * If the blockchain has one block, it will return a list containing just that block.
 * If it contains more than one block:
 * the first element in the list will be the hash of the highest numbered block that
 * we cannot undo
 * the second element will be the hash of an item at the half way point in the undoable
 * segment of the blockchain
 * the third will be ~3/4 of the way through the undoable segment of the block chain
 * the fourth will be at ~7/8...
 * &c.
 * the last item in the list will be the hash of the most recent block on our preferred chain
 * so if the blockchain had 26 blocks labeled a - z, the synopsis would be:
 * a n u x z
 * the idea being that by sending a small (<30) number of block ids, we can summarize a huge
 * blockchain. The block ids are more dense near the end of the chain where because we are
 * more likely to be almost in sync when we first connect, and forks are likely to be short.
 * If the peer we're syncing with in our example is on a fork that started at block 'v',
 * then they will reply to our synopsis with a list of all blocks starting from block 'u',
 * the last block they know that we had in common.
 *
 * In the real code, there are several complications.
 *
 * First, as an optimization, we don't usually send a synopsis of the entire blockchain, we
 * send a synopsis of only the segment of the blockchain that we have undo data for. If their
 * fork doesn't build off of something in our undo history, we would be unable to switch, so there's
 * no reason to fetch the blocks.
 *
 * Second, when a peer replies to our initial synopsis and gives us a list of the blocks they think
 * we are missing, they only send a chunk of a few thousand blocks at once. After we get those
 * block ids, we need to request more blocks by sending another synopsis (we can't just say "send me
 * the next 2000 ids" because they may have switched forks themselves and they don't track what
 * they've sent us). For faster performance, we want to get a fairly long list of block ids first,
 * then start downloading the blocks.

 * The peer doesn't handle these follow-up block id requests any different from the initial request;
 * it treats the synopsis we send as our blockchain and bases its response entirely off that. So to
 * get the response we want (the next chunk of block ids following the last one they sent us, or,
 * failing that, the shortest fork off of the last list of block ids they sent), we need to construct
 * a synopsis as if our blockchain was made up of:
 * 1. the blocks in our block chain up to the fork point (if there is a fork) or the head block (if no fork)
 * 2. the blocks we've already pushed from their fork (if there's a fork)
 * 3. the block ids they've previously sent us
 * Segment 3 is handled in the p2p code, it just tells us the number of blocks it has (in
 * number_of_blocks_after_reference_point) so we can leave space in the synopsis for them.

 * We're responsible for constructing the synopsis of Segments 1 and 2 from our active blockchain and
 * fork database. The reference_point parameter is the last block from that peer that has been
 * successfully pushed to the blockchain, so that tells us whether the peer is on a fork or on
 * the main chain.
 */

BitShares Core Release 2.0.180612

std::vector<item_hash_t> application_impl::get_blockchain_synopsis(const item_hash_t& reference_point,
 uint32_t number_of_blocks_after_reference_point)

24-1 application.cpp

std::vector<item_hash_t> synopsis;
synopsis.reserve(30);
uint32_t high_block_num;
uint32_t non_fork_high_block_num;
uint32_t low_block_num = _chain_db->last_non_undoable_block_num();
std::vector<block_id_type> fork_history;

s

 try

reference_point != item_hash_t()

true

uint32_t reference_point_block_num = block_header::num_from_id(reference_point);
assert(reference_point_block_num > 0);

high_block_num = reference_point_block_num;
non_fork_high_block_num = high_block_num;

false

is_included_block(reference_point)

true

// the node is asking for a summary of the block chain up to a specified
// block, which may or may not be on a fork
// for now, assume it's not on a fork

// reference_point is a block we know about and is on the main chain

reference_point_block_num < low_block_num

low_block_num = reference_point_block_num;

24-1a

// we're on the same fork (at least as far as reference_point) but we've passed
// reference point and could no longer undo that far if we diverged after that
// block. This should probably only happen due to a race condition where
// the network thread calls this function, and then immediately pushes a bunch of blocks,
// then the main thread finally processes this function.
// with the current framework, there's not much we can do to tell the network
// thread what our current head block is, so we'll just pretend that
// our head is actually the reference point.
// this *may* enable us to fetch blocks that we're unable to push, but that should
// be a rare case (and correctly handled)

true

24-1b

false

24-1cfalse

24-1d

true

BitShares Core Release 2.0.180612

std::vector<item_hash_t> application_impl::get_blockchain_synopsis(const item_hash_t& reference_point,
 uint32_t number_of_blocks_after_reference_point)

24-1 application.cpp

fork_history = _chain_db->get_block_ids_on_fork(reference_point);

assert(fork_history.size() >= 2);

24-1b

 try

 fork_history.front() != reference_point

true

non_fork_high_block_num = 0;

false

last_non_fork_block == block_id_type()

true

// block is a block we know about, but it is on a fork

false

// returns a vector where the last element is the common ancestor with the preferred chain,
// and the first element is the reference point you passed in

edump((fork_history)(reference_point));
assert(fork_history.front() == reference_point);

block_id_type last_non_fork_block = fork_history.back();
fork_history.pop_back(); // remove the common ancestor
boost::reverse(fork_history);

// if the fork goes all the way back to genesis
(does graphene's fork db allow this?)

non_fork_high_block_num =
block_header::num_from_id(last_non_fork_block);

high_block_num = non_fork_high_block_num + fork_history.size();

assert(high_block_num == block_header::num_from_id(fork_history.back()));

catch (const fc::exception& e)

elog("Unable to construct a blockchain synopsis for reference hash ${hash}:
${exception}", ("hash", reference_point)("exception", e));

 throw;

non_fork_high_block_num < low_block_num

wlog("Unable to generate a usable synopsis because the peer we're generating it for forked too long ago "
 "(our chains diverge after block #${non_fork_high_block_num} but only undoable to block #${low_block_num})",
 ("low_block_num", low_block_num)
 ("non_fork_high_block_num", non_fork_high_block_num));

FC_THROW_EXCEPTION(graphene::net::block_older_than_undo_history,
"Peer is are on a fork I'm unable to switch to");

true

24-1e

false

BitShares Core Release 2.0.180612

 while

std::vector<item_hash_t> application_impl::get_blockchain_synopsis(const item_hash_t& reference_point,
 uint32_t number_of_blocks_after_reference_point)

24-1 application.cpp

synopsis.push_back(_chain_db->get_block_id_for_num(low_block_num));

low_block_num == 0

true
false

(low_block_num <= high_block_num);

 // at this point:
// low_block_num is the block before the first block we can undo,
// non_fork_high_block_num is the block before the fork (if the peer is on a fork, or
otherwise it is the same as high_block_num)
// high_block_num is the block number of the reference block, or the end of the chain if
no reference provided

// true_high_block_num is the ending block number after the network code appends any
item ids it knows about that we don't

// no reference point specified, summarize the whole block chain24-1a

high_block_num = _chain_db->head_block_num();
non_fork_high_block_num = high_block_num;

high_block_num == 0

 return synopsis;

 // we have no blocks

true

false

24-1e

low_block_num = 1;

uint32_t true_high_block_num = high_block_num + number_of_blocks_after_reference_point;

 do

low_block_num <= non_fork_high_block_num

true

synopsis.push_back(fork_history[low_block_num - non_fork_high_block_num - 1]);

low_block_num += (true_high_block_num - low_block_num + 2) / 2;

return synopsis;

false

true

false

FC_THROW_EXCEPTION(graphene::net::block_older_than_undo_history,
"Peer is are on a fork I'm unable to switch to");

 //idump((synopsis));

// for each block in the synopsis, figure out where to pull the block id from.
// if it's <= non_fork_high_block_num, we grab it from the main blockchain;
// if it's not, we pull it from the fork history

// End of first “try”

e

